Phương pháp giải toán nhanh bằng Casio chuyên đề số phức

Một trong những phương pháp giải toán liên quan đến số phức, đó là phương pháp giải toán nhanh bằng Casio chuyên đề số phức

Theo đó, tất cả các bài toán số  phức đều thực hiện trong chức năng MODE 2 (CMPLX) ngoại trừ 1 số bài toán đặc biệt.

1. Phương pháp giải toán nhanh bằng Casio chuyên đề số phức với các phép tính thông thường, tính Moldun, Conjg của 1 số phức hay 1 biểu thức số phức và tính số phức có mũ cao…

Bài toán tổng quát:

Phương pháp giải:

Để máy tính ở chế độ Deg không để dưới dạng Rad và vào chế độ số phức Mode2

Khi đó chữ “i” trong phần ảo sẽ là nút “ENG” và ta thực hiện bấm máy như 1 phép tính bìnhthường.

Tính Moldun và số phức liên hợp của số phức Z:

-> Moldun: Ấn shift + hyp. Xuất hiện dấu trị tuyệt đối thì ta nhập biểu thức đó vào trong rồi lấy kết quả.

Ví dụ 1: Đề thi minh họa của bộ GD&ĐT lần 2 năm 2017.

Tìm số phức liên hợp của số phức z = i(3i + 1)

A: 3-i B: -3+i C: 3+i D: -3-i

Giải: Mode 2 và ấn shift 2, chọn2

Nhập như sau: Conjg(i(3i + 1)) và ấn bằng

Kết quả ra -3 -i, vậy D đúng

Ví dụ 2:Đề thi minh họa của bộ GD&ĐT lần 2 năm 2017

Với số phức có mũ cao thì chỉ máy tính Casio fx 570 vn plus và Vinacal ES plus II có thể bấm được như bình thường. Còn Casio fx 570 es plus thì sẽ Math Error.

2. Phương pháp giải toán nhanh bằng Casio chuyên đề số phức với dạng tìm căn bậc 2 của số phức

Bài toán tổng quát: Cho số phức z thỏa mãn z = f(a,bi). Tìm 1 căn bậc 2 của số phức và tính tổng, tích hoặc 1 biểu thức của hệ số.

Phương pháp giải:

Cách 1: Đối với việc tìm căn bậc 2 của số phức cách nhanh nhất là ta bình phương các đáp án xem đáp án nào trùng số phức đề cho.

Cách 2: Không vào chế độ Mode 2. Ta để máy ở chế độ Mode1;

Ấn shift + sẽ xuất hiện và ta nhập Pol (phần thực, phần ảo) … Lưu ý dấu “,” là shift ) sau đó ấn =

Ví dụ: Tìm 1 căn bậc 2 của số phức: z = (-2 – 6i) + ( 2i –1)

A: -1+2i B: 1 –2i C: 1 + 2i D: -1 – 2i

Giải: Vào mode 2. Rút gọn z về dạng tối giản: z = -3-4i

Lần lượt bình phương các đáp án ta thấy đáp án B khi bình phương sẽ ra đúng đề bài. Nên B đúng

3.Phương pháp giải toán nhanh bằng Casio chuyên đề số phức: Phương trình số phức và các bài toán liên quan

Phương trình không chứa ẩn:

Bài toán tổng quát: Cho phương trình az 2 +bz+c = 0. Phương trình có nghiệm (số nghiệm) là:

Phương pháp giải:

Dùng cho máy vinacal: Mode 2 vào chế độ phức và giải phương trình số phức như phương trình hàm số như bình thường và nhân được nghiệm phức

Đối với casio fx: Nhiều phương trình có nghiệm thực nên cách tốt nhất ta sẽ nhập phương trình đề cho vào máy tính và thực hiện Calc đáp án để tìm ra đáp án

Phương trình tìm ẩn:

Bài toán tổng quát: Cho phương trình az 2 +bz+c = 0. Biết phương trình có nghiệm zi = Ai tìm a,b,c …. ?

Phương pháp giải: Mode 2 và lần lượt thay các hệ số ở đáp án vào đề;

Dùng Mode 5 để giải phương trình nếu phương trình nào ra nghiệm như đề cho thì đó là đáp án đúng.

Ví dụ: Phương trình z 2 + bz + c = 0 nhận z = 1 + i là nghiệm. Giá trị của b và c là :

A: b = 3;c=5 B: B = 1; c=3 C: b = 4;c=3 D: b = -2;c =2

Giải: Mode 2 và nhập vào máy tính X 2 + BX +C

Calc lần lượt cho các đáp án. Khi ta calc cho B = -2, C = 2, X = 1+i ra kết quả bằng 0, vậy D là đáp án đúng.

4. Phương pháp giải toán nhanh bằng Casio chuyên đề số phức: Tìm số phức thỏa mãn điều kiện phức tạp và tính tổng, tích… Hệ số của số phức

Ngoài cách hỏi trên còn có thể hỏi: Tìm phần thực, phần ảo hay moldun….. của số phức thỏa mãn điều kiện đề bài

Bài toán tổng quát: Cho số phức z = a + bi thỏa mã điều kiện ( phức tạp kèm cả liên hợp…) Tìm số phức z?

Phương pháp giải:

Nhập điều kiện đề cho vào casio. Lưu ý thay z = a + bi và liên hợp của z = a –bi

Calc a = 1000 và b =100

Sau khi ra kết quả là : X + Yi ta sẽ phân tích X và Y theo a và b để được 2 phương trình bậc nhất 2 ẩn để giải tìm ra a và b

Lưu ý: Khi phân tích ưu tiên cho hệ số a nhiều nhất có thể ( chú ý ví dụ )

Sau khi tìm được a, b ta làm nốt yêu cầu của đề.

Ví dụ: Tìm phần ảo của số phức z = a + bi biết (1 + i) 2 .(2 – i)z = 8 + i + (2 + 2i)z

A:-4 B:4 C: 2 D:-2

Giải: Mode 2 và nhập vào casio (1 + i) 2 .(2 – i)(A+Bi) - 8 - i - (2 +2i)(A+Bi)

Calc A=1000 và B=100

Ta được kết quả là -208 + 1999i.

Phân tích như sau:

5. Phương pháp giải toán nhanh bằng Casio chuyên đề số phức : Tìm tập hợp biểu diễn của số phức thỏa mãn điều kiện và hình học số phức

Bài toán tổng quát: Trên mặt phẳng hệ trục tọa độ Oxy tìm tập hợp biểu diễn của số phức z thỏa mã điều kiện…:

Phương pháp giải: Ưu tiên việc sử dụng 2 máy tính để giải

Máy thứ 1 ta nhập điều kiện của đề cho với z và liên hợp z dạng tổng quát

Máy thứ 2 lần lượt các đáp án. Ta lấy 2 điểm thuộc các đáp án

Calc 2 điểm vừa tìm vào điều kiện. Cái nào kết quả ra 0 thì đó là đáp án đúng (chú ý xem ví dụ)

Ví dụ: Trên mặt phẳng Oxy tìm tập hợp biểu diễn các số phức thỏa mã điều kiện |zi – (2 + i)| = 2

A: x + 2y -1=0 B: (x +1) 2 + (y – 2) 2 =9

C: (x -1) 2 + (y + 2) 2 =4 D: 3x + 4y -2 =0

Giải: Mode 2 và nhập điều kiện vào casio |(A+Bi)i –(2+i)|-2

Thử đáp án A: Cho y = 0 ta được x = 1 ta calc A = 1 và B = 0 kết quả khác 0. Loại luôn đáp án A

Thử đáp án B: Cho x = -1 ta được y = 5. Calc ra kết quả khác 0. Loại đáp án B

Thử đáp án C: cho x = 1 ta được y = 0 và y = -4 Calc lần lượt đều được kết quả bằng 0. Vậy đáp án đúng là C.